If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-35=0
a = 10; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·10·(-35)
Δ = 1400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1400}=\sqrt{100*14}=\sqrt{100}*\sqrt{14}=10\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{14}}{2*10}=\frac{0-10\sqrt{14}}{20} =-\frac{10\sqrt{14}}{20} =-\frac{\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{14}}{2*10}=\frac{0+10\sqrt{14}}{20} =\frac{10\sqrt{14}}{20} =\frac{\sqrt{14}}{2} $
| 5(2x-3)=8x+5 | | -1=-1x+x^2 | | 12x-7=8x+1 | | -6(w+5)=-8w-20 | | 2x/5-x/2+1=0 | | 2x+4/2=13+7 | | 5x+29=8(x+7) | | -4(b+1)+2b=3(2b=3(2b-1) | | 2(2x-3)/3=2x+1/3+3 | | 2(3a=2)=-8 | | 2n=3n=7=-43 | | (1/2)x+1=(3/2x-8 | | 2r+6-r=-7 | | -2(x+3)=-(4-3x)+8 | | 198-y=56 | | 138-u=248 | | 83=-w+174 | | 4x-(5+x)=7-3x | | 42=x+(-25) | | 3x+5=(x+3)=23 | | x-(x-3)=x+5 | | (X+12)=x-4 | | 8(t+2)-3(t-2)=6(t-7)+8 | | 1/x-3+1/3x-21=0 | | 1/2+1/3=1/6(x-18) | | -1p+5p=20+2p | | 3/4x=63/4 | | 6x+9=77+3x-4 | | 1/2+2/3=1/6(x-18) | | 95x+136=266x+216 | | 0,5x+2-1/4x=3 | | 2x(x+5)+3x=20 |